[Paper review 39]

Autoencoding Variational Inference for Topic Models

(Srivastava, Sutton, 2017)

[Contents]

1. Abstract

Topic Models

- popular method for learning representations of text
- challenges : change to topic model... require new inference algorithm
 - $\rightarrow \textbf{AEVB}$: to address the problem... but impractical!

2. Background

2.1 LDA

- most popular topic model
- each document = mixture of topics
 - each topic (β_k)= probability distribution over vocabulary

(matrix $eta = (eta_1, \dots, eta_K)$)

- marginal likelihood of a document $\ensuremath{\mathbf{w}}$:

 $p(\mathbf{w} \mid lpha, eta) = \int_{ heta} \left(\prod_{n=1}^{N} \sum_{z_n=1}^{k} p\left(w_n \mid z_n, eta\right) p\left(z_n \mid heta)
ight) p(heta \mid lpha) d heta.$

• posterior inference over θ and z is intractable.....

(due to coupling between those two, under multinomial assumption)

• summary

```
for each document w do

Draw topic distribution \theta \sim \text{Dirichlet}(\alpha);

for each word at position n do

Sample topic z_n \sim \text{Multinomial}(1, \theta);

Sample word w_n \sim \text{Multinomial}(1, \beta_{z_n});

end

end
```

2.2 Mean Field and AEVB

Mean Field

- assumption : independency between latent variables
- break coupling between θ and zby introducing **free variational parameters** : γ over θ , ϕ over z
- $q(\theta, z \mid \gamma, \phi) = q_{\gamma}(\theta) \prod_{n} q_{\phi}(z_{n}).$

• minimize (negative) ELBO :

 $L(\gamma, \phi \mid \alpha, \beta) = D_{KL}[q(\theta, z \mid \gamma, \phi) \| p(\theta, z \mid \mathbf{w}, \alpha, \beta)] - \log p(\mathbf{w} \mid \alpha, \beta)$

• will call DMFVI (Decoupled Mean-Field Variational inference)

under MF...

- pros) have closed form! (:: conjugacy of Dirichlet & Multinomial distn)
- cons) limits its flexibility

AEVB

(Auto Encoding Variational Bayes)

- black box inference models
- write ELBO as...
 - $L(\gamma,\phi\mid\alpha,\beta) = -D_{KL}[q(\theta,z\mid\gamma,\phi) \| p(\theta,z\mid\alpha)] + \mathbb{E}_{q(\theta,z\mid\gamma,\phi)}[\log p(\mathbf{w}\mid z,\theta,\alpha,\beta)].$
 - 1st term) match variational posterior to the prior
 - 2nd term) reconstruction term
- variational parameters are computed using NN, called **inference network**

ex) choose Gaussian variational distribution $q_\gamma(heta) = N(heta;\mu(\mathbf{w}),\mathrm{diag}(\mathbf{v}(\mathbf{w})))$

• unlike DMFVI, have coupled the variational parameters!

(since they are computed from same NN)

• use reparameterization trick

3. AEVB in LDA

practical challenges in applying AEVB to topic models

3-1. Collapsing *z*'s

z can be summed out

 $p(\mathbf{w} \mid lpha, eta) = \int_{ heta} \left(\prod_{n=1}^N p\left(w_n \mid eta, heta
ight)
ight) p(heta \mid lpha) d heta.$

- $w_n \mid \beta, \theta$ is Multinomial $(1, \beta \theta)$
- β : matrix of all topic-word probability vectors

3-2. Working with Dirichlet Beliefs : Laplace Approximation

topic proportion θ : **Dirichlet prior**

- difficult to handle Dirichlet in AEVB
 - (:: reparam trick works for Gaussian distn)
- .: use Laplace Approximation to the Dirichlet prior

Laplace approximation

• do it in "softmax basis" instead of simplex

•
$$P(\theta(\mathbf{h}) \mid \alpha) = rac{\Gamma(\sum_k lpha_k)}{\prod_k \Gamma(lpha_k)} \prod_k heta_k^{lpha_k} g\left(\mathbf{1}^T \mathbf{h}\right)$$

• $heta=\sigma({f h})$ where $\sigma(.)$ is softmax function

- results in a distribution over softmax variables ${\bf h}$ with..

- mean μ_1 : $\mu_{1k} = \log \alpha_k \frac{1}{K} \sum_i \log \alpha_i$
- cov $\Sigma_1: \Sigma_{1kk} = \frac{1}{\alpha_k} \left(1 \frac{2}{K}\right) + \frac{1}{K^2} \sum_i \frac{1}{\alpha_k}$
- approximate $p(\theta \mid \alpha)$ in the simplex basis, with $\hat{p}(\theta \mid \mu_1, \Sigma_1) = \mathcal{LN}(\theta \mid \mu_1, \Sigma_1)$
 - \mathcal{LN} : logistic normal distribution, with params μ_1 and Σ_1
 - diagonal covariance matrix

3-3. Variational Objective

2 inference networks : f_μ and f_Σ with parameters δ

• output of each network is a vector in \mathbb{R}^{K}

for document \mathbf{w} , define $q(\theta)$ to be \mathcal{LN}

- mean : $\mu_0 = f_\mu(\mathbf{w}, \boldsymbol{\delta})$
- diag cov : $\Sigma_0 = ext{diag}(f_\Sigma(\mathbf{w}, oldsymbol{\delta}))$

can sample using reparam trick + laplace approximation

•
$$heta=\sigma\left(oldsymbol{\mu}_0+oldsymbol{\Sigma}_0^{1/2}oldsymbol{\epsilon}
ight)$$
 , where $\epsilon\sim\mathcal{N}(0,I)$

ELBO :

$$L(\boldsymbol{\Theta}) = \sum_{d=1}^{D} \left[-\left(\frac{1}{2} \left\{ \operatorname{tr} \left(\boldsymbol{\Sigma}_{1}^{-1} \boldsymbol{\Sigma}_{0}\right) + \left(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0}\right)^{T} \boldsymbol{\Sigma}_{1}^{-1} \left(\boldsymbol{\mu}_{1} - \boldsymbol{\mu}_{0}\right) - K + \log \frac{|\boldsymbol{\Sigma}_{1}|}{|\boldsymbol{\Sigma}_{0}||} \right\} \right) + \mathbb{E}_{\boldsymbol{\epsilon} \sim \mathcal{N}(0,I)} \left[\mathbf{w}_{d}^{\top} \log \left(\sigma(\boldsymbol{\beta})\sigma\left(\boldsymbol{\mu}_{0} + \boldsymbol{\Sigma}_{0}^{1/2}\boldsymbol{\epsilon}\right)\right) \right]$$

- Θ : set of all the model and variational parameters
- $\mathbf{w}_1 \dots \mathbf{w}_D$: documents in corpus
- 1st term) KL divergence between two *LN* 2nd term) reconstruction error

3-4. Training and Practical Considerations : Dealing with Component Collapsing

AEVB is prone to component collapsing

- reason) as latent dim increases, KL reg (1st term in ELBO) dominates ELBO (decoder weights collapse, close to prior & do not show posterior divergence)
- solve) Adam + high moment weight (= β_1) and learning rate η (\rightarrow early peaks in functional spaces can be easily avoided)
- other solutions) batch norm, drop out, down-weight the KL term...

4. ProdLDA : LDA with Products of Experts

 $p(\mathbf{w} \mid \theta, \beta)$: mixture of multinomials

• problem : no sharper than the components being mixed! how to solve...?

Solution : replace word-level mixture with weighted product of experts

ightarrow drastic improvement in topic coherence

4-1. Model

• LDA where word-level mixture over topics

(that is, topic matrix is not constrained to exist in multinomial simplex prior to mixing)

- LDA +
 - (1) β is unnormalized
 - (2) w_n is defined as $w_n \mid \beta, \theta \sim$ Multinomial $(1, \sigma(\beta \sigma))$

The connection to a product of experts is straightforward, as for the multinomial, a mixture of natural parameters corresponds to a weighted geometric average of the mean parameters. That is, consider two N dimensional multinomials parametrized by mean vectors \mathbf{p} and \mathbf{q} .

$$P(\mathbf{x} \mid \delta m{r} + (1-\delta)m{s}) \propto \prod_{i=1}^N \sigma (\delta r_i + (1-\delta)s_i)^{x_i} \propto \prod_{i=1}^N \left[r_i^\delta \cdot s_i^{(1-\delta)}
ight]^{x_i}.$$

- $\mathbf{p} = \sigma(\mathbf{r}).$
- $\mathbf{q} = \sigma(\mathbf{s})$.

5. Discussion and Future Work

Problem of AEVB + LDA ... difficult to train because of

- 1) Dirichlet prior
- 2) component collapsing problem

Present blackbox inference method for topic models